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This paper addresses optical solitons in birefringent fibers with Kerr law nonlinearity, in presence of perturbation terms and 
spatio-temporal dispersion. The Riccati equation expansion algorithm is applied to secure soliton solutions to the model. 
Dark and singular soliton solutions are obtained for both components of the model. Additional solutions revealed, with this 
algorithm, are plane waves and singular periodic solutions. These are obtained as a byproduct and are not applicable to 
birefringent fibers.  
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1. Introduction 
 

Optical solitons is a cherished area of research in 

the field of nonlinear optics [1-20]. These solitons 

appear in polarization-preserving fibers as well as 

birefringent fibers. When pulses are polarized due to 

bend, twists and external stress on these fibers, they split 

and this leads to differential group delay and thus the 

two pulses undergo polarization mode dispersion [2, 4]. 

With such an unwanted physical situation the governing 

nonlinear Schrödinger’s equation (NLSE) splits to 

vector coupled NLSE in a birefringent fiber. 

The integrability of this vector coupled NLSE is a 

challenging task. This paper applies a mathematical 

technique that is known as the Riccati equation method 

that integrates this coupled NLSE in presence of several 

perturbation terms. This integration scheme leads to dark 

solitons and singular soliton solutions with constraint 

conditions that must stay valid for these solitons to exist. 

Moreover, as a byproduct, other forms of nonlinear 

wave solutions emerge. These are plane waves and 

singular periodic solutions. The details are discussed in 

the section below. It must, however, be noted that ansatz 

approach was applied earlier where bright, dark and 

singular soliton solutions were obtained [2, 4]. 

 

2. Governing equation 
 

The dimensionless form of the coupled NLSE with 

STD and Kerr law nonlinearity, with perturbation terms, 

is given by [2] 
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For equations (1) and (2), ),( txq  and ),( txr  are 

wave  vector fields in birefringent fibers that are complex-

valued functions. for 2,1l , la  represents the coefficients 

of group velocity dispersion (GVD), while lb  are the 

coefficients of spatio-temporal dispersion (STD). The 

coefficients of self-phase modulation (SPM) and cross-phase 

modulation (XPM) are lc  and ld  respectively. From the 

perturbation terms, l  represents inter-modal dispersion;  

l   are the coefficients of self-steepening terms, l  and l  

are the coefficients of nonlinear dispersion and finally l   

gives the third order dispersion.  

The consideration of STD in addition to GVD is needed 

in order to make the governing equation well-posed [6]. The 

self-steepening terms are included to avoid the formation of 
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shock waves. Finally, the 3OD terms creep in, if GVD is 

low. The SPM term is due to Kerr law nonlinearity. In 

order to study (1) and (2), the following transformation 

is the starting point [2]: 
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where )(lU  represent the shape of the pulse and  
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llll txtx   ),( , 2,1l            (6)

      

In Eqs. (3) and (4), the functions ),( txl  

represent phase components of the soliton. From the 

phase, l  are the soliton frequency l  are the wave 

numbers and l  are the phase constants. Finally in Eq. 

(5), v  is the velocity of the soliton. Substituting Eqs. (3) 

and (4) into Eqs. (1) and (2) and decomposing into real 

and imaginary parts lead to 
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Integrating Eqs. (8) and (10) respect to  , then we 

have  
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By Eqs. (11) and (12), we have  
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Therefore (13) shows tha this integration algorithm is 

applicable provided 3OD is take off from the model. Thus, 

the integrable model equations (1) and (2) reduces to  
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Next, from Eq. (15), we obtain  
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Eq. (18) is the velocity of the soliton for the two 

components and Eq. (14) represents the constraint condition 

to ensure the solitons exist. Also, from (18), the following 

relation is imposed: 

 

1llb                                   (19) 
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Then, from (18), equating the velocity of the 

solitons leads to the constraint condition given by  
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By Eq. (13), Eqs. (7) and (9) reduce to  
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3. Ricatti equation approach  
 

In this section, the Ricatti equation approach [8] 

will be shown in detail to obtain the singular solutions, 

singular and dark soliton solutions to Eqs. (1) and (2).  

According to the homogeneous balance method, Eqs. 

(21) and (22) have the solutions in the form of 
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and )(  satisfies the Riccati equation 

 

)()( 2   f                        (25) 

 

where f  real-valued constant that is independent on  . 

Eq. (25) is the well known Riccati equation, which 

admits the following explicit solutions:  
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when 0f , and  
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)coth()(  ff               (29) 

 

when 0f , and  
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when 0f .  

Substituting Eqs. (23) and (24) along with (25) in Eqs. 

(21) and (22) leads to  

 

 

0)()(

))((

)(

)22)((

10

2

101

3

1011111

1011111

2

111

3

1111

2

















AABBd

AAc

AAba

AfAvbaB

  (31) 

 

 

0)()(

))((

)(

)22)((

10

2

102

3

1022222

1022222

2

222

3

1122

2

















BBAAd

BBc

BBba

BfBvbaB

 (32) 

 

Then, equating the coefficient of each power of )(  

to zero, we obtain a system of nonlinear algebraic equations 

which solve to 
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Now, equating the two values of v from (18) and (36) 

leads to  
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Finally, using solutions (26)-(30) of Eq. (25), we 

obtain the the following singular periodic solutions for 

the two components 
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These solutions exist for 0f . However, for 

0f , one recovers the dark 1-soliton solution given 

by 
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or singular 1-soliton solutions given by  
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Finally, for 0f , the following rational solutions 

emerge: 

 

 111

)(
),( 1  




txi
e

vtxB

A
txq            (47) 

and  

 222

)(
),( 1  




txi
e

vtxB

B
txr          (48) 

 

where B  is given by Eq. (35), while v  is given by Eq. (36), 

and l  are given by Eqs. (33) and (34). These solutions will 

be defined subjected to the constraint conditions (13)-(15) 

and (19)-(20) and (38).  

 

 

4. Conclusion 
 

This paper recovered dark and singular optical solitons 

in birefringent fibers where in addition to several 

perturbation terms STD is considered along with GVD for 

well-posedness of the governing model. Riccati equation 

method retrieved soliton as well as other solutions to the 

model.  These additional solutions are singular periodic 

solutions and plane waves. Although these non-soliton 

solutions are not applicable in optics, they are listed to 

obtain a complete spectrum of solutions.  It is unfortunate 

that this integration algorithm cannot retrieve soliton 

solutions for birefringent fibers in parabolic law medium, 

this paper therefore was confined to Kerr law nonlinearity. 

Later, this integration will be further applied to several 

additional situations such as cascaded systems, Thirring 

solitons, DWDM systems and optical couplers, just to name 

a few. The results of those research will be disclosed in 

future. 
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